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Abstract
We investigate two complementary problems related to maintaining the relative
positions of N random walks on the line: (i) the leader problem, that is, the
probability LN(t) that the leftmost particle remains the leftmost as a function
of time and (ii) the laggard problem, the probability RN(t) that the rightmost
particle never becomes the leftmost. We map these ordering problems onto an
equivalent (N − 1)-dimensional electrostatic problem. From this construction
we obtain a very accurate estimate for LN(t) for N = 4, the first case that is
not exactly solvable: L4(t) ∝ t−β4 , with β4 = 0.913 42(8). The probability
of being the laggard also decays algebraically, RN(t) ∝ t−γN ; we derive
γ2 = 1/2, γ3 = 3/8, and argue that γN → N−1 ln N as N → ∞.

PACS numbers: 02.50.Cw, 05.40.−a, 05.50.+q, 87.18.Sn

1. Introduction

Consider N identical and independent random walkers on an infinite line3. There are many
interesting questions that can be posed about the order of the particles. For example, what
is the probability that all walkers maintain their relative positions up to time t, that is,
x1(τ ) < x2(τ ) < · · · < xN(τ) for all 0 � τ � t? By mapping this vicious random walk
problem onto the diffusion of a single effective particle in N dimensions and then exploiting the
image method for the diffusion equation, this ordering probability was found [1, 2] to decay
asymptotically as t−αN with αN = N(N −1)/4. Many additional aspects of this problem have
been investigated within the rubrics of vicious random walks [1, 3–8] and ‘friendly’ random
walks [9, 10].
3 We assume that all random walkers have the same diffusion coefficient D if not stated otherwise. For distinct
diffusivities Di for each particle, one may rescale each coordinate by xi → yi = xi/

√
Di so that the motion of the

effective particle is again isotropic.
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In this work, we study two related and complementary random walk ordering problems.
We start with N particles that are initially located at x1(0) < x2(0) < · · · < xN(0). In the
‘leader’ problem, we consider the probability LN(t) that the initially leftmost particle at x1(0)

remains to the left of all the other particles up to time t [11–17]. In the ‘laggard’ problem,
we are concerned with the probability RN(t) that the initially rightmost particle at xN(0)

never attains the lead (becomes leftmost). These two probabilities LN(t) and RN(t) decay
algebraically

LN(t) ∝ t−βN RN(t) ∝ t−γN (1)

as t → ∞ for any ordered initial particle configuration. Our basic goal is to determine the
exponents βN and γN .

These ordering problems arise in a variety of contexts. Physical applications include
wetting phenomena [1, 2] and three-dimensional Lorentzian gravity [18]. A more probabilistic
application is the ballot problem [11], where one is interested in the probability that the vote
for a single candidate remains ahead of all the other candidates throughout the counting; this
is just a restatement of the leader problem. Another example is that of ‘the lamb and the lions’
[14–16], in which one is interested in the survival of a diffusing lamb in the presence of many
diffusing lions. In one dimension, a lamb that was initially in the lead must remain the leader
to survive.

For the leader problem, exact results are known for small N only: β2 = 1/2 and β3 = 3/4
[3, 11, 19, 20], while βN → ln(4N)/4 for large N [13–15, 17]4. This slow increase arises
because adding another particle has little effect on the survival of the leader when N is large.
For N � 4, no exact results are available and one focus of our work is to obtain an accurate
estimate of βN for the case N = 4. We accomplish this by mapping the reaction onto an
equivalent electrostatic potential problem due to a point charge within an appropriately defined
three-dimensional domain [20, 21]. This mapping provides both an appealing way to visualize
the reaction process and an accurate estimate of the survival exponent β4.

For the laggard problem, we employ the same method as in the leader problem to obtain
γ3 = 3/8. We also estimate the asymptotic behaviour of RN and find γN → N−1 ln N as
N → ∞. As is expected, a laggard in a large population likely remains a laggard. Therefore,
the probability of remaining a laggard decays very slowly with time for large N.

In the next section, we review known results about the leader problem in a three-particle
system. In section 3, we outline the electrostatic formulation of the leader problem and
then apply it to the four-particle system in section 4. A numerical solution of the pertinent
Laplace equation gives β4 = 0.913 42(8), a significant improvement over the previously
quoted estimate β4 ≈ 0.91 [12]. In section 5, we turn to the laggard problem and give an
asymptotic estimate for the exponent γN . Concluding remarks and some open questions are
given in section 6.

2. Conventional approach to the leader problem

We begin by mapping the original problem of N diffusing particles x1, x2, . . . , xN on the
line onto a single effective diffusing particle located at (x1, x2, . . . , xN) in an N-dimensional
space. The particle order constraints on the line translate to bounding hyperplanes within which
the effective particle is confined [1, 20]. The effective particle is absorbed if it hits one of these
boundaries. For the leader problem, the explicit shape of these bounding hyperplanes can
be easily worked out for the cases N = 2 and N = 3; we will later extend this analysis to the
four-particle system.
4 Numerical simulations also suggest a logarithmic dependence on N, but with a different prefactor, see [17].
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Figure 1. The order domains for three particles in (a) the full three-dimensional space, and
(b) projected onto the subspace perpendicular to the (1, 1, 1) axis. The notation ijk is shorthand
for xi < xj < xk . The allowed region corresponding to the survival of a leader (x1 < x2, x3) is
indicated by the darker shading, while the lighter shaded region corresponds to the laggard problem
(x3 �< x1, x2).

For two particles, their separation undergoes simple diffusion and the process terminates
when the separation equals zero. Thus, the survival probability of the leader decays as t−1/2.
To fix the notation and ideas for later sections, we now study the three-particle system. For
a leader at x1(t) and particles at x2(t) and x3(t), we view these coordinates as equivalent to
the isotropic diffusion of a single effective particle at (x1(t), x2(t), x3(t)) in three dimensions.
Whenever this effective particle crosses the plane Aij : xi = xj , the original walkers at xi and
xj in one dimension reverse their order. There are three such planes A12, A13, A23 that divide
the space into six domains, corresponding to the 3! possible orderings of the three walkers
(figure 1(a)). These planes all intersect along the (1, 1, 1) axis.

We may simplify this description by projecting onto the plane x1 + x2 + x3 = 0 that
contains the origin and is perpendicular to the (1, 1, 1) axis. Now the plane A12 may be
written parametrically as (a, a, b) and its intersection with the plane x1 + x2 + x3 = 0 is the
line (a, a,−2a). Likewise, the intersections of A13 and A23 with the plane x1 + x2 + x3 = 0
are (a,−2a, a) and (−2a, a, a), respectively (figure 1(b)).

The survival of the leader corresponds to the effective particle remaining within the
adjacent domains 123 and 132 in figure 1(b). The background particles at x2 and x3 are
allowed to cross, but the leader at x1 always remains to the left of both x2 and x3. The union
of these two domains defines a wedge of opening angle 120◦. Since the survival probability
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of a diffusing particle within a wedge of arbitrary opening angle ϕ and absorbing boundaries
decays asymptotically as t−π/2ϕ [22], we deduce the known result that the leader survival
probability exponent is β3 = 3/4.

3. Electrostatic formulation

For more than three particles, the domain for the effective particle is geometrically more
complex and the corresponding solution to the diffusion equation does not seem tractable.
We therefore recast the survival probability of the effective diffusing particle in terms of the
simpler problem of the electrostatic potential of a point charge within the same geometric
domain [20, 21]. Let S(t) be the survival probability of a diffusing particle within an infinite
wedge-shaped d-dimensional domain with absorbing boundary conditions. Let V (r) be the
electrostatic potential due to a point charge within the same domain, with V = 0 on the
boundary. Generically, these two quantities have the asymptotic behaviours

S(t) ∝ t−β t → ∞ V (r) ∝ r−µ r → ∞. (2)

More relevant for our purposes, these two quantities are simply related by [14, 15, 20]∫ t

0
S(t) dt ∼

∫ √
t

V (r)rd−1 dr.

This equivalence arises because the integral of the diffusion equation over all time is just the
Laplace equation. Thus, the time integral of the survival probability has the same asymptotic
behaviour as the spatial integral of the electrostatic potential over the portion of the domain
that is accessible by a diffusing particle up to time t. Substituting the respective asymptotic
behaviours from equations (2), and noting that the allowed wedge domain for an N-particle
system has dimension N − 1, we obtain the fundamental exponent relation

β = µ − N + 3

2
. (3)

Thus, the large-distance behaviour of the electrostatic potential within a specified domain
with Dirichlet boundary conditions also gives the long-time survival probability of a diffusing
particle within this domain subject to the same absorbing boundary conditions. From this
survival probability, we can then determine the original ordering probability.

To illustrate this approach, let us determine the various ordering probabilities of three
particles on the line in terms of the equivalent electrostatic problem. In fact, it is simpler to
work backwards and find the equivalent ordering problem that corresponds to a specific wedge
domain, For example, consider the 60◦ wedge 123 in figure 1. If the effective particle remains
within this wedge, the initial particle ordering on the line is preserved. This corresponds
to the vicious random walk problem in which no particle crossings are allowed. To obtain
the asymptotic behaviour of the potential of a point charge interior to this wedge, let us
assume that V (r) ∼ r−µf (ϕ) as r → ∞. Substituting this ansatz into the two-dimensional
Laplace equation, we obtain the eigenvalue equation f ′′(ϕ) = −µ2f (ϕ), subject to f (ϕ) = 0
on the wedge boundaries. For the 60◦ wedge, the solution with the smallest eigenvalue is
f (ϕ) = sin(3ϕ). Thus µ = 3, leading to the known result β = (µ − N + 3)/2 = 3/2, for
three vicious walkers.

4. Four-particle system

The state of the system may be represented by an effective diffusing particle in four dimensions.
By projecting onto the three-dimensional subspace x1 + x2 + x3 + x4 = 0 that is orthogonal
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to the (1, 1, 1, 1) axis, the order domains of the original particles can be reduced to three
spatial dimensions. In this three-dimensional subspace, the boundary A12 : x1 = x2 becomes
the plane (a, a, b, c), with 2a + b + c = 0. Likewise, A13 may be written parametrically as
(a, b, a, c), where again 2a + b + c = 0. Thus, the locus L123 ≡ A12 ∩ A13 : x1 = x2 = x3 is
the line (a, a, a,−3a). This body diagonal joins the nodes 4 and 4 in figure 2. Along this axis,
the original particle coordinates on the line obey the constraint x1 = x2 = x3, with x4 < x3

on the half-axis closer to node 4 and x4 > x3 on the half-axis closer to node 4. A similar
description applies to the axes L124 = (a, a,−3a, a) between 3 and 3, L134 = (a,−3a, a, a)

between 2 and 2 and L234 = (−3a, a, a, a) between 1 and 1.
The locus where x1 = x2 and x3 = x4 simultaneously, is the line L12,34 ≡ A12 ∩ A34 =

(a, a,−a,−a). Likewise, L13,24 = (a,−a, a,−a), and L14,23 = (a,−a,−a, a). Viewed in
the orthogonal three-subspace, the six planes Aij intersect in seven lines (4 Lijk and 3Lij,kl),
and divide the subspace into 24 semi-infinite wedges, as shown in figure 2(b). Each of these
wedges corresponds to one of the 4! orderings of the walkers in one dimension.

We first illustrate the electrostatic formulation of this system for the vicious random
walk problem. Since the initial particle order is preserved, the effective diffusing particle
remains within a single wedge ijkl in figure 2. As outlined in the previous section, the
survival probability of this effective particle corresponds to the electrostatic potential of
a point charge within this one wedge, with the boundary surfaces held at zero potential.
To solve this electrostatic problem, it is convenient to place the point charge at the
symmetric location (u, v,w) = (0, 1, 1/2) within the wedge 1234, where the (u, v,w)

axes are defined in figure 2. From the image method, the potential due to a point
charge within one wedge is equivalent to the potential of an array of 24 symmetrically
placed point charges consisting of the initial charge and 23 image charges, with positive
images at −(0, 1, 1/2),±(0, 1,−1/2),±(±1/2, 0, 1),±(1,±1/2, 0), and negative images
at ±(±1/2, 1, 0),±(0,±1/2, 1) and ±(0, 1,±1/2). Using Mathematica, the asymptotic
behaviour of the potential in wedge 1234 (where the original charge is placed) due to this
charge array is

V (r) = a1r
−7 + a2r

−11 + a3r
−13 + a4r

−15 + · · · .
(The coefficients ai depend on the location of the charge and on the orientation of r.) Using
the exponent relation (3), the asymptotic survival probability of four vicious walkers is given
by

S(t) = b1t
−3 + b2t

−5 + b3t
−6 + b4t

−7 + · · · .
The leading behaviour confirms the known result [1, 2], and we obtain the form of the
corrections as well. As an amusing aside, note that an r−7 dependence for the potential is
normally achieved by a 64-pole charge configuration. The high symmetry of the 24 charges
in the ordering problem leads to a multipole field normally associated with at least 64 point
charges.

We next turn to the leader problem. This system corresponds to the electrostatic problem
within the combined domain of the six wedges marked 1234, 1243, 1423, 1432, 1342 and
1324, in figure 2. The resulting domain is a tetrahedral corner, with its apex at the centre of
the cube, that is flanked by the rays 02, 03 and 04. Despite the simplicity of this domain,
we are unable to solve this electrostatic problem analytically and we have instead studied the
problem numerically.

In the allowed region of the cube in figure 2, we discretize space and solve the electrostatic
potential of a point charge by using successive over-relaxation, with the domain boundaries at
zero potential. For simplicity, the charge is chosen to be at the symmetric point (1, 1, 1). For
the outer faces of the cube we use two different boundary conditions: (a) absorbing (V = 0),
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Figure 2. (a) Cardboard model of the ordering domains for four particles on the line after
projection onto the subspace perpendicular to (1, 1, 1, 1). This structure consists of only six
intersecting planes. Each plane bisects the cube and is defined by the equality of two coordinates.
(b) Schematic of the same system. The wedge ijkl denotes the region where xi < xj < xk < xl .
The union of six such ordering wedges, corresponding to the leader problem x1 < x2, x3, x4, are
labelled. This domain is bounded by the rays 02, 03, 04, where the origin is the dashed circle at the
intersection of the axes L14,23 ≡ u,L12,34 ≡ v and L13,24 ≡ w. One constraint plane, x1 = x3, is
shown shaded (outside the cube).

and (b) reflecting, (dV/dn = 0, where n is the direction normal to the surface). The true
potential—that of the infinite wedge—lies between these two extremes. We also exploit the
symmetry about the (1, 1, 1) diagonal and use only the domain marked 1234 in figure 2, with
absorbing boundary conditions on the plane 3434, and reflecting boundary conditions on the
planes 1212 and 1414. As already discussed, the outer cube face, 1324, is taken to be reflecting
or absorbing. These space savings allow us to carry out computations for a cube of 500 lattice
spacings on a side.



Ordering of random walks 1795

0

 2.826
µ

1/r

 2.825

 2.824

 2.823

 2.822

 2.821

 2.820
0.02 0.04 0.06 0.08 0.1

 2.827

Figure 3. Local exponent µ(r), as a function of 1/r for the tetrahedral wedge with absorbing (+)

and reflecting (◦) finite-size boundary conditions at the outer face of the cube.

While the power-law decay of the potential sets in quickly, the finite-size effect is
pronounced and it is perceptible already at 25 lattice spacings away from the charge. This
is the primary limitation on the accuracy of our exponent estimate. Nevertheless, the
local exponent µ(r) = −d ln V (r)/d ln r varies only at the fourth digit (figure 3). The
approach of the local exponent to the asymptotic limit also suggests that V (r) has the form
V (r) ∼ r−µ + Ar−4. Assuming that this is the case, extrapolation of the data in figure 3 gives
µ = 2.826 84 ± 0.000 16, where the error bar is the difference in the extrapolated value of
µ(r) from the two different boundary conditions. From the exponent correspondence given
in equation (3), we thereby obtain, for the lead probability,

L4(t) ∼ t−β4 + At−3/2 β4 = 0.913 42(8). (4)

It is hard to match this numerical accuracy with that from direct simulations of the survival
of the leader. Using the latter method, we simulated 109 realizations of the system in which the
leader is initially at x = −1, while the other three particles are all at x = 0. Note that this is a
different initial condition from that in the electrostatic approach, but the initial condition does
not affect the asymptotic behaviour. We find extremely linear data for the time dependence of
the leader survival probability on a double logarithmic scale. To estimate the exponent β4, we
computed the local slopes of the survival probability versus time in contiguous time ranges
between t and 1.5t when plotted on a double logarithmic scale. These local exponents are
plotted against 1/ ln1.5 t (figure 4). The results are compatible but much less accurate than
equation (4). Similarly, Bramson and Griffeath [12] quote β4 ≈ 0.91 from direct, but less
extensive, simulations.

5. The laggard problem

In the laggard problem, we study the probability that the initially rightmost particle at xN

has never been the leader during the time interval (0, t). The laggard problem can also be
recast into the diffusion of a single effective particle within an N-dimensional wedge-shaped
region, with absorbing domain boundaries. This mapping leads to the basic conclusion that
every particle that is initially not in the lead exhibits the same asymptotic behaviour as the last
particle. Indeed, for any particle i initially at xi , the regions xi �< x1, . . . , xi−1, xi+1, . . . , xN

are isomorphic. The initial condition merely fixes the location of the effective particle in this
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Figure 4. Direct simulation results for the local exponent in the survival probability for 109

configurations. The arrow indicates our estimate for β4 from equation (4).

allowed region. Another fundamental observation is that the allowed regions of the effective
particle for the leader and the laggard problems are complementary for all N.

For two particles, the probability that the laggard does not become the leader obviously
decays as t−1/2, i.e. γ2 = 1/2. The case N = 3 is more interesting but also solvable. The
condition that a particle initially at x3 never attaining the lead (x3 �< x1, x2) is equivalent to the
effective particle remaining with the lighter shaded region in figure 1(b). Since the opening
angle of the resultant wedge is ϕ = 4π/3, the corresponding survival probability decays as
t−3/8, implying that γ3 = 3/8.

To study the laggard problem for larger N, we have resorted to direct numerical simulations,
from which we have estimated the exponent γN for N = 3, 4, 5 and 6. Each simulation is
based on 106 realizations in which N − 1 particles are initially at the origin, while the laggard
is at x = 1. Each simulation runs until the laggard achieves the lead or to 105 time steps,
whichever comes first. From the survival probability, we estimate γN ≈ 0.35, 0.30, 0.26 and
0.23 for N = 3–6, respectively. Since we know that γ3 = 0.375, the discrepancy of 0.025
between the simulation result and the theory is indicative of the magnitude of systematic errors
in this straightforward numerical approach.

It is worth noting that the electrostatic formulation of the laggard problem, while
conceptually straightforward, is numerically more challenging than the leader problem. This
arises because the domain of the equivalent electrostatic problem has a large solid angle.
(Recall that it is the complement of the region for the leader problem.) This large solid angle
has two effects: (i) more lattice points are needed for a computation to a fixed radius, and
(ii) finite-size effects are more pronounced. Thus, with a fixed amount of computing power
we are unable to obtain results that are superior to direct numerical simulations.

On the analytical side, while it appears difficult to determine the exponent γN analytically
for general N > 3, the situation simplifies in the large N limit because the position of the
leader becomes progressively more deterministic. Indeed, the probability density PN(y, t)

that the leader is located at distance y from the origin (assuming that all particles are initially
at the origin) is [15]

PN(y, t) = N e−y2/4Dt

√
4πDt

[
1 − 1

2
erfc

(
− y√

4Dt

)]N−1
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where erfc(x) = 1 − erf(x) is the complementary error function. Performing a large N
analysis, we find that the probability density PN(y, t) approaches a Gaussian

PN(y, t) → 1√
2πσ 2

exp

{
− (y + y∗)2

2σ 2

}
(5)

with the mean and the variance of this distribution given by

y∗ = z
√

4Dt σ 2 = Dt

z2
(6)

where z is determined from the transcendental relation

z ez2 = N√
4π

. (7)

Consequently, the parameter z diverges as z ≈ √
ln N when N → ∞. The ratio of the

dispersion to the mean displacement thus decreases as σ/y∗ ≈ (2 ln N)−1, so that the position
of the leader indeed becomes more deterministic as N → ∞.

Therefore in the large N limit we can assume that the leader is moving deterministically
and its position is given by −y∗(t). Then the probability that the laggard never achieves the
lead is equivalent to the probability that a diffusing particle initially at the origin does not
overtake a receding particle whose position is varying as −y∗(t). This corresponds to the
solution to the diffusion equation in the expanding region x ∈ (−y∗(t),∞) with an absorbing
boundary condition at the receding boundary x = −y∗. When y∗ ∝ t1/2, this diffusion
equation can be solved exactly by reducing it to a parabolic cylinder equation in a fixed region
[14]. However, in the limit t → ∞, we can obtain asymptotically correct results much more
simply. Because the absorbing boundary recedes from the laggard particle relatively quickly,
we solve the problem by assuming that the density P(x, t) of the laggard particle approaches
a Gaussian with yet unknown amplitude RN(t) [14, 15]:

P(x, t) = RN(t)√
4πDt

exp

{
− x2

4Dt

}
. (8)

Although this distribution does not satisfy the absorbing boundary condition, the inconsistency
is negligible since the exponential term in equation (8) is of order N−1 at the boundary y = y∗.

The probability RN(t) is now found self-consistently by equating the ‘mass’ loss to the
flux:

dRN

dt
= D

∂P

∂x

∣∣∣
x=−y∗

. (9)

Using equation (8) to compute the flux we convert equation (9) into

dRN

dt
= −z2

N

RN

t
(10)

from which the exponent γN is z2/N . This is of course valid only in the large N limit. Taking
this limit in equation (7) we obtain

γN = ln N

N
− ln ln N

2N
+ · · · . (11)

Thus as N gets large, the probability that the laggard never attains the lead decays extremely
slowly with time. This fits with the naive intuition that if the number of particles is large a
laggard initially is very likely to remain a laggard. Each additional particle makes it even
less likely that the laggard could achieve the lead. Amusingly, these asymptotic exponent
predictions are numerically close to the previously quoted results from direct numerical
simulations of the laggard problem.
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6. Concluding remarks

We investigated two dual random walk ordering problems in one dimension: (i) what is the
probability that a particle, which is initially in the lead, remains in the lead and (ii) what is the
probability that a particle, which is initially not in the lead, never achieves the lead? These
problems are most interesting in one spatial dimension because of the effective correlations
between the interacting particles. These correlations are absent in two dimensions and greater,
so that an N-particle system reduces to N independent two-particle systems [8, 14, 15].

We determined the respective exponents βN and γN associated with the lead and laggard
probabilities for general N. Both exponents can be determined by elementary geometric
methods for N = 2 and 3 and by asymptotic arguments for N → ∞. Our new results are the
following: (i) a precise estimate for β4 and (ii) the large N behaviour of γN .

A simple generalization is to allow each particle i to have a distinct diffusion coefficient
Di . The exponents βN and γN will now depend on the diffusion coefficients, except for N = 2,
where β2 and γ2 always equal 1/2. The case N = 3 is still solvable by introducing rescaled
coordinates yi = xi/

√
Di to render the diffusion of the effective particle isotropic, after which

the mapping to the wedge can be performed straightforwardly. We thus find

β3 =
{

2 − 2

π
cos−1 D1√

(D1 + D2)(D1 + D3)

}−1

γ3 =
{

2 +
2

π
cos−1 D3√

(D1 + D3)(D2 + D3)

}−1

.

An amusing special case is the case of a stationary laggard, for which γ3 = 1/3.
Finally, it is also worth mentioning a promising development to solve the diffusion

equation in the domains defined by the ordering of one-dimensional random walks. This is the
recent discovery of deep connections between vicious walkers and random matrix theory [5–7].
These allow one to not only re-derive the exponent αN of the original vicious random walk
problem, but also lead to many new results. It would be extremely useful if these techniques
could be extended to the leader and laggard problems.
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